2018
DOI: 10.1007/s11001-018-9364-5
|View full text |Cite
|
Sign up to set email alerts
|

Time-dependent variations in vertical fluxes of hydrothermal plumes at mid-ocean ridges

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 65 publications
0
4
0
3
Order By: Relevance
“…This resulted in the first margin wide quantification of natural gas escaping the seafloor. Zhang et al (2019) used video footage of fluids escaping the Grotto vent at Endeavor ridge to study short-period variations in vertical fluxes of hydrothermal plumes. Quantitative analysis of digital video images of plumes using the particle image velocimetry method allowed the comparison of vents from midocean ridges around the globe.…”
Section: Seafloor Ocean and Atmospheric Linksmentioning
confidence: 99%
“…This resulted in the first margin wide quantification of natural gas escaping the seafloor. Zhang et al (2019) used video footage of fluids escaping the Grotto vent at Endeavor ridge to study short-period variations in vertical fluxes of hydrothermal plumes. Quantitative analysis of digital video images of plumes using the particle image velocimetry method allowed the comparison of vents from midocean ridges around the globe.…”
Section: Seafloor Ocean and Atmospheric Linksmentioning
confidence: 99%
“…图像区域互相关算法在实验流体力学中应用广泛 , 是粒子图像测速技术(Particle Image Velocimetry, PIV) [27,28] 和粒子图像追踪测速技术(Particle Tracking Velocimetry, PTV) [29] 的核心算法. 区域互相关算法的基本原理是 计算前后两张图像中判读窗口的相似性, 以最大相似点的位移作为判读窗口的位移.…”
Section: 图像区域互相关算法unclassified
“…在该机制下, 羽 流实验结果以及羽流积分模型理论均发现在近喷口区域 , 羽流截面流量随羽流上升近似线性增加 [35,36,37] . 经公式 [40] , 该畸变可以通过测量相机拍摄平面和热液羽流成像平面的夹角进行坐标转换矫 正, 在本研究中, 热液羽流图像并未出现明显的透视现象, 因此由相机倾斜而导致的计算误差较小; (4)热液羽流 与海水间的折射率差异造成光线偏移, 模糊羽流边缘; (5)图像互相关算法可能会对流速造成一定程度的低估 [28] .…”
Section: 羽流流量unclassified
“…(2) 海底冷泉与海底热液虽然属于不同的海底流 体活动, 但二者在喷出海底后都往往会形成与周围海 水存在性质差异的羽状流, 在同一个海洋系统中, 二者 具有千丝万缕的联系 [1] . 前人已经利用PIV方法对热液 喷口的流场进行了计算 [58,59] . Crone等人 (3) 基于PIV方法估算的海底冷泉气泡的流速, 与 实验室测量和前人野外测量的速度具有很好的一致 性 [21,60] .…”
Section: 基于Piv方法计算冷泉流场的可行性unclassified