New modalities of optical coherence tomography (OCT) are based not only on the analysis of light beam scattering by biological tissues, but also, to a greater extent, on the assessment of spatio-temporal changes in the speckle structure (both the amplitude and the speckle phase). The aim of the study was to develop a method for eliminating parasitic vibrations in the scanning system, which interfere with the new OCT modalities such as angiography, relaxography, and slow process monitoring. Materials and Methods. The task of stabilizing the beam scan trajectory was successfully solved by actively filtering the controlling voltage. Results. The effect of the proposed approach application is demonstrated both on a phantom sample and examples of implementation of several modalities applied to real tissues, including: exudate visualization in vivo; OCT-angiography for visualization of microcirculation of the brain; OCT-relaxography on the example of mapping the time of mechanical relaxation of cartilage tissue; increasing the lateral resolution of OCT by compensating for defocusing. Conclusion. Vibrations of the scanning system cause artifact speckle variations that mask the informative variations of the speckles due to the relative change of the position of the scatterers inside the biological tissue caused by Brownian motion, flow, and deformation. Without proper stabilization of the scanning pattern, it is impossible to implement these modalities with quality suitable for practical use.