2024
DOI: 10.1109/tla.2024.10431420
|View full text |Cite
|
Sign up to set email alerts
|

Time frequency distribution and deep neural network for automated identification of insomnia using single channel EEG-signals

Kamlesh Kumar,
Prince Kumar,
Ruchit Kumar Patel
et al.

Abstract: It is essential to have enough sleep for a healthy life; otherwise, it may lead to sleep disorders such as apnea, narcolepsy, insomnia, and periodic leg movements. A polysomnogram (PSG) is typically used to analyze sleep and identify different sleep disorders. This work proposes a novel convolutional neural network (CNN)-based technique for insomnia detection using single-channel electroencephalogram (EEG) signals instead of complex PSG. Morlet wavelet-based continuous wavelet transforms and smoothed pseudo-Wi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance