At present, great effort is spent on the experimental realization of gauge fields for quantum many-body systems in optical lattices. At the same time, the single-site-resolved detection of individual atoms has become a new powerful experimental tool. We discuss a protocol for the single-site-resolved measurement of the current statistics of quantum many-body systems, which makes use of a bichromatic optical superlattice and single-site detection. We illustrate the protocol by a numerical study of the current statistics for interacting bosons in one and two dimensions and discuss the role of the on-site interactions for the current pattern and the ground-state symmetry for small two-dimensional lattices with artificial magnetic fields