2010
DOI: 10.1103/physreve.82.011110
|View full text |Cite
|
Sign up to set email alerts
|

Time parametrization and stationary distributions in a relativistic gas

Abstract: In this paper we consider the effect of different time parameterizations on the stationary velocity distribution function for a relativistic gas. We clarify the distinction between two such distributions, namely the Jüttner and the modified Jüttner distributions. Using a recently proposed model of a relativistic gas, we show that the obtained results for the proper-time averaging does not lead to modified Jüttner distribution (as recently conjectured), but introduces only a Lorentz factor γ to the well-known J… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
17
0

Year Published

2011
2011
2021
2021

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 16 publications
(20 citation statements)
references
References 31 publications
(74 reference statements)
3
17
0
Order By: Relevance
“…This relativistic relation for temperature is not a true relation, and in fact, the temperature’s relation depends on the thermocouple apparatus used. A true thermocouple rejects this definition of temperature (For example, see [8], [10], [11]). Thus, to obtain a true relation between temperature and acceleration, we use concepts of BIon:…”
Section: Introductionmentioning
confidence: 99%
“…This relativistic relation for temperature is not a true relation, and in fact, the temperature’s relation depends on the thermocouple apparatus used. A true thermocouple rejects this definition of temperature (For example, see [8], [10], [11]). Thus, to obtain a true relation between temperature and acceleration, we use concepts of BIon:…”
Section: Introductionmentioning
confidence: 99%
“…We therefore simply build such a generalized thermodynamic function using the Jüttner distribution and use it to calculate various thermodynamic relations. The Jüttner distribution is given by [9,10]:…”
Section: Resultsmentioning
confidence: 99%
“…instead of MB distribution ( f MB ) [56][57][58][59][60][61]. Jüttner distribution is indeed the relativistic extension of generalized isotropic MB distribution when E(p) = mγ(p)c 2 .…”
Section: Relativistic Gasmentioning
confidence: 99%