The anti-Kasha process provides the possibility of using high-energy excited states to develop novel applications. Our previous research (Nature communications, 2020, 11, 793) has demonstrated a dual-emission anti-Kasha-active fluorophore for bioimaging application, which exhibits near-infrared emissions from the S 1 state and visible anti-Kasha emissions from the S 2 state. Here, we applied tunable blue-side femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy, assisted by quantum calculations, to reveal the anti-Kasha dual emission mechanism, in which the emergence of two fluorescing states is due to the retardation of internal conversion from the S 2 state to the S 1 state. It has been demonstrated that the facts of anti-Kasha high-energy emission are commonly attributed to a large energy gap between the two excited states, leading to a decrease in the internal conversion rate due to a poor Franck−Condon factor. In this study, analysis of the calculation and FSRS experimental results provide us further insight into the dual-emission anti-Kasha mechanism, where the observation of hydrogen out-of-plane Raman modes from FSRS suggested that, in addition to the energy-gap law, the initial photoinduced molecular conformational change plays a key role in influencing the rate of internal conversion.