Myosin subfragment 1 (S-1) can be fractionated into two isozymes, (A1)S-1 containing alkali light chain 1 and (A2)S-1 containing alkali light chain 2. The predominant difference in the behavior of the two isozymes of S-1 is that, at low ionic strength, the actin concentration required for half-maximal ATPase activity is considerably lower for (A1)S-1 than for (A2)S-1; that is, the apparent binding constant KATPase for (A1)S-1 is greater than KATPase for (A2)S-1 [Weeds, A.G., & Taylor, R.S. (1975) Nature (London) 257, 54-56]. This difference disappears at high ionic strength [Wagner, P. D., Slater, C. S., Pope, B., & Weeds, A.G. (1979) Eur. J. Biochem. 99, 385-394]. In the present study we investigated whether the difference in the KATPase values of (A1)S-1 and (A2)S-1 is due to a difference in the actual affinity of these S-1 isozymes for actin. Binding was measured in the presence of ATP and AMP-PNP and in the absence of nucleotide at varied ionic strengths. We found that at low ionic strength where KATPase is several times stronger for (A1)S-1 than for (A2)S-1, the binding of (A1)S-1 to actin is correspondingly stronger than that of (A2)S-1 irrespective of the nucleotide present. Furthermore, as the ionic strength is increased, just as the difference between the KATPase values for (A1)S-1 and (A2)S-1 disappears so too does the difference in the affinity of the two isozymes for actin.(ABSTRACT TRUNCATED AT 250 WORDS)