This paper presents an implementation of deflectometry in the infrared spectrum. Deflectometry consists in recording the specular image of a reference grid pattern onto the mirror-like surface of a test specimen. This technique has two main advantages, high sensitivity and direct measurement of surface slopes, which in the case of thin plate bending is only one spatial differentiation away from surface strains. The objective of imaging in the infrared spectrum is to mitigate the main limitation of deflectometry in the visible spectrum, which is to require an extremely smooth surface to provide dominant specular reflection. This paper explores IR deflectometry for the first time for deformation measurements. Two different infrared cameras were assessed for use in IR deflectometry, a short wave quantum detector one, and a long wave microbolometer (MB) array one. Different materials of varying surface roughness were imaged and it was verified that the Rayleigh criterion was appropriate to determine whether IR deflectometry was feasible on a given surface. With the MB camera, most off-the-shelf material surfaces proved reflective enough to perform IR deflectometry. Finally, several bending tests were performed on aluminium plates and the deformation fields were shown to compare remarkably well with finite element simulations. The experimental data were then used in the Virtual Fields Method (VFM) and the elastic stiffness components of aluminium were retrieved with excellent accuracy, further validating IR deflectometry.