We study the time evolution of ultracold atoms in an accelerated optical lattice. For a Bose-Einstein condensate with a narrow quasimomentum distribution in a shallow optical lattice the decay of the survival probability in the ground band has a steplike structure. In this regime we establish a connection between the wave-function-renormalization parameter Z introduced by P. Facchi, H. Nakazato, and S. Pascazio [Phys. Rev. Lett. 86, 2699 (2001)] to characterize nonexponential decay and the phenomenon of resonantly enhanced tunneling, where the decay rate is peaked for particular values of the lattice depth and the accelerating force