The measurement of the metallic vapor density in a vacuum arc is crucial to acquire a better understanding of both the anodic activity and the dielectric recovery process in vacuum interrupters. The objective of this study was to measure the chromium vapor density and its axial distribution within the gap between the chromium contacts. Optical absorption spectroscopy (OAS) with a broadband light-source is adopted for this investigation. The results show that when the vacuum arc burns in the diffuse mode, the metallic vapor density maxima occur near the electrodes during the arcing period. At the peak current, the vapor density near the electrodes can be as high as 2.5 × 1018 m−3. With the decrease of the arc current, the metallic vapor density near the electrodes decreases as well, while the vapor density in the center of the gap remains nearly constant during the arcing period. At current zero, the metallic vapor in the gap has a nearly uniform distribution of about 3 × 1017 m−3. When the vacuum arc burns in the high-current mode, the metallic vapor density near the anode is lower than that in other areas until the vacuum arc becomes diffuse. Then, the evaporation process of the anodic molten region starts to play an important role and the metallic vapor density near the anode increases. At current zero, the metallic vapor has a density of about 4 × 1018 m−3 near the anode, which is much higher than anywhere else. Because the metallic vapor density at current zero is too low to cause a Townsend avalanche, extra factors are needed for initiating the breakdown in the post-arc phase. These factors could include a residual plasma within the gap and the behavior of the liquid metal in the molten anodic region.