Studies of low-energy processes, such as neutron beta-decay, contribute important information regarding different aspects of physics including nuclear and particle physics and cosmology. The information from these systems is often complementary to that obtained from high-energy sources. Neutron decay is the most basic charged-current weak interaction in baryons. Precise measurement of the parameters characterizing it can be used to study the standard model as well set limits on possible extensions to it. This paper gives an overview of some of the basic features of neutron beta decay and summarizes the status of some recent developments.