The performance of time-reversal (TR) based far-field wireless power transfer (WPT) from an antenna array in a complex propagation environment is investigated in comparison with conventional arraybased beamforming (BF). A two-step experiment is performed, namely 1) the propagation stage and 2) rectification stage. In the propagation stage, signal transmission is measured between the transmit array and receive antenna in an indoor multipath environment, for line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The results demonstrate that TR results in higher peak voltage compared to BF given the same average transmit power. In addition, while BF loses its ability to selectively send waves at the receiver due to impairment of the beam from multipath, TR can selectively focus waves at the receiver by inherently taking advantage of multipath. In the rectification stage, the resulting signals from the propagation stage are fed into a broadband rectifier for RF-to-DC conversion. It is shown that the signals received using TR lead to higher rectified DC voltage and rectification efficiency. The overall results suggest that TR can outperform BF with higher rectification efficiency given the same average transmit power. Through optimization of the TR pulse interval, array configuration and transmit power, further improvement in the performance of TR based WPT in a complex propagation environment is possible.INDEX TERMS Time-reversal, complex propagation environment, wireless power transfer, antenna array, beamforming, broadband rectifier, rectification efficiency.