2006
DOI: 10.1016/j.jmaa.2005.10.074
|View full text |Cite
|
Sign up to set email alerts
|

Time scales in linear delayed differential equations

Abstract: The aim of this paper is to apply and justify the so-called aggregation of variables method for reduction of a complex system of linear delayed differential equations with two time scales: slow and fast. The difference between these time scales makes a parameter ε > 0 to appear in the formulation, being a mathematical problem of singular perturbations. The main result of this work consists of demonstrating that, under some hypotheses, the solution to the perturbed problem converges when ε → 0 to the solution o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0
2

Year Published

2008
2008
2014
2014

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(8 citation statements)
references
References 20 publications
0
6
0
2
Order By: Relevance
“…Paper [2] (cf. [3,27,32]) presents a model of dynamics of a fish population with both age and vertical structures. The fish habitat is divided into N spatial patches and the fish densities n i in the ith patch satisfy the following system of equations: (16) …”
Section: 3mentioning
confidence: 99%
“…Paper [2] (cf. [3,27,32]) presents a model of dynamics of a fish population with both age and vertical structures. The fish habitat is divided into N spatial patches and the fish densities n i in the ith patch satisfy the following system of equations: (16) …”
Section: 3mentioning
confidence: 99%
“…est très rapide en comparaison à l'autre : on parlera de dynamique lente et de dynamique rapide. Nous allons présenter les résultats relatifs au cas autonome développé dans [23,24].…”
Section: Méthodes D'agrégation Des Variables En Temps Discretunclassified
“…De telles méthodes ont d'abord été présentées dans [2] et ont été développées initialement pour les Equations aux Dérivées Ordinaires dans [5], [4] et [21]. Ces travaux ont ensuite été étendus aux modèles discrets ( [23] et [8]), et enfin aux Equations aux Dérivées Partielles [1,12] et Equations Différentielles à Retard [24]. Les idées derrière les méthodes d'agrégation des variables sont souvent intuitives et sont parfois utilisées de manière implicite, par exemple en épidémiologie où la dynamique des populations est ignorée car la dynamique épidémiologique est beaucoup plus rapide.…”
Section: Introductionunclassified
“…For this reason, it is customary to write the argument of φ as a, 'a' standing for 'age. ' A model of dynamics of a Solea solea or Engraulis encrasicholus population with both age and vertical structures, due to Arino et al [1,20], uses the McKendrick model as a building block. In the model, the fish habitat is divided into N spatial patches and the fish densities, or age profiles φ i , in the ith patch satisfy the following system of equations:…”
Section: Introductionmentioning
confidence: 99%
“…In the context of Theorem 2.1, we take B = X × X, Q = Q, and then (20) follows by (8) with P = P. Also, B is the space X of vectors of the form αx βx , x ∈ X. Let C be the operator in B given by…”
mentioning
confidence: 99%