“…The literature highlights a great diversity of ML and data mining techniques for CCP. Among these are Decision tree, Logistic regression and Random forests (De Caigny et al, 2018;Höppner, Stripling, Baesens, & Verdonck, 2017;Nisha, 2016), Support vector machine (Dong, Suen, & Krzyzak, 2005;Farquad, Ravi, & Raju, 2014;He, Shi, Wan, & Zhao, 2014;Renjith, 2017;Wang, Zhang, & Yu, n.d.), Active learning (Jamil & Khan, 2016;Verbeke, Martens, Mues, & Baesens, 2011), Rough set theory (Amin et al, 2016;Amin, Anwar, Adnan, Khan, & Iqbal, 2015), Negative correlation learning (Rodan, Fayyoumi, Faris, Alsakran, & Al-Kadi, 2015), Dynamic networks (Óskarsdóttir, Van Calster, Baesens, Lemahieu, & Vanthienen, 2018), AdaBoost ensemble techniques (Idris et al, 2017), Sequential pattern mining (Culbert et al, 2018), Recursive PARTioning (RPART) (Vafeiadis et al, 2015) Artificial neural network (Kasiran, Ibrahim, Syahir, & Ribuan, 2014;Tsai & Lu, 2009;Zakaryazad & Duman, 2016). The aforementioned discussion shown the importance of CCP as it is very beneficial assets of competitive businesses and equally important for various domain, such as; Banking sector (Chitra & Subashini, 2011;He et al, 2014;Oyeniyi & Adeyemo, 2015), Financial services (Charles et al, 2017;He et al, 2014), Social networks (Maria, Verbeke, Sarraute, Baesens, & Vanthienen, 2016;Óskarsdóttir et al, 2017;Verbeke, Martens, & Baesens, 2014), Online gaming industry (Kawale, Pal, & Srivastava, 2009;Suznjevic, Stupar, & Matijasevic, 2011), Human resource man-agement (Sarad...…”