As renewable energy becomes increasingly dominant in the energy mix, the power system is evolving towards high proportions of renewable energy installations and power electronics-based equipment. This transition introduces significant challenges to the grid’s safe and stable operation. On the one hand, renewable energy generation equipment inherently provides weak voltage support, necessitating improvements in the voltage support capacity at renewable energy grid points. This situation leads to frequent curtailments and power limitations. On the other hand, the output of renewable energy is characterized by its volatility and randomness, resulting in substantial power curtailment. The joint intelligent control and optimization technology of “renewable energy + energy storage + synchronous condenser” can effectively enhance the deliverable capacity limits of renewable energy, boost its utilization rates, and meet the demands for renewable energy transmission and consumption. Initially, the paper discusses the mechanism by which distributed synchronous condensers improve the short-circuit ratio based on the MRSCR (Multiple Renewable Energy Station Short-Circuits Ratio) index. Subsequently, with the minimum total cost of system operation as the optimization objective, a time-series production simulation optimization model is established. A corresponding optimization method, considering the joint configuration of “renewable energy + energy storage + synchronous condenser,” is proposed. Finally, the effectiveness of the proposed method is verified through common calculations using BPA, SCCP, and the production simulation model, considering a real-world example involving large-scale renewable and thermal energy transmission through an AC/DC system. The study reveals that the joint intelligent control and optimization technology can enhance both the sending and absorbing capacities of renewable energy while yielding favorable economic benefits.