Time Series Trends Forecasting for Manufacturing Enterprises in the Digital Age
Chaolin Yang,
Jingdong Yan,
Guangming Wang
Abstract:In the digital age, manufacturing enterprises face challenges like information overload and data fragmentation. To address these issues, this paper proposes a novel method that integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Long Short-Term Memory (BILSTM), and Temporal Pattern Attention (TPA) for analyzing time series data. IWOA optimizes hyperparameters, BILSTM captures temporal dependencies, and TPA enhances interpretability. Experimental results show the method's effectiveness in… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.