We discuss a discrete-event, particle-based simulation approach which reproduces the statistical distributions of Maxwell's theory and quantum theory by generating detection events one-by-one. This event-based approach gives a unified causeand-effect description of quantum optics experiments such as single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, quantum eraser, double-slit, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments, and various neutron interferometry experiments at a level of detail which is not covered by conventional quantum theoretical descriptions. We illustrate the approach by application to single-photon Einstein-Podolsky-Rosen-Bohm experiments and single-neutron interferometry experiments that violate a Bell inequality.