The equations of the linearized first post-Newtonian approximation to general relativity are often written in "gravitoelectromagnetic" Maxwell-like form, since that facilitates physical intuition. Damour, Soffel and Xu (DSX) (as a side issue in their complex but elegant papers on relativistic celestial mechanics) have expressed the first post-Newtonian approximation, including all nonlinearities, in Maxwell-like form. This paper summarizes that DSX Maxwell-like formalism (which is not easily extracted from their celestial mechanics papers), and then extends it to include the postNewtonian (Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e. gravitational stress tensor) and law of momentum conservation in Maxwell-like form. The authors and their colleagues have found these Maxwell-like momentum tools useful for developing physical intuition into numerical-relativity simulations of compact binaries with spin.