2016
DOI: 10.1111/jtsa.12211
|View full text |Cite
|
Sign up to set email alerts
|

Time‐Varying Transition Probabilities for Markov Regime Switching Models

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
36
0

Year Published

2016
2016
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 77 publications
(37 citation statements)
references
References 45 publications
1
36
0
Order By: Relevance
“…Document [21] computes transition probability by using Monte-Carlo sampling and Bayesian method on asynchronous vector Markov process. Document [22] propose a new Markov switching model with time varying probabilities for the transitions, the transition probabilities evolve overtime by means of an observation driven model, the innovation is generated by the score of the predictive likelihood function. Document [23] propose a Duration-Dependent Hidden Semi-Markov Model, it allows explicit modeling of state transition probabilities between the states.…”
Section: Discussionmentioning
confidence: 99%
“…Document [21] computes transition probability by using Monte-Carlo sampling and Bayesian method on asynchronous vector Markov process. Document [22] propose a new Markov switching model with time varying probabilities for the transitions, the transition probabilities evolve overtime by means of an observation driven model, the innovation is generated by the score of the predictive likelihood function. Document [23] propose a Duration-Dependent Hidden Semi-Markov Model, it allows explicit modeling of state transition probabilities between the states.…”
Section: Discussionmentioning
confidence: 99%
“…In the following, we assume only that the observed data are generated by a stationary and ergodic count process without imposing a specific DGP. Bazzi et al , Blasques et al , Blasques et al , Blasques et al , and Blasques et al considered similar assumptions about the DGP.…”
Section: Statistical Propertiesmentioning
confidence: 95%
“…In this section, we study the reliability of the ML estimation. In the literature, the asymptotic properties of GAS models are often discussed under the assumption of correct specification, see Harvey and Luati and Harvey , but often also under misspecification, see Bazzi et al and Blasques et al . We focus our asymptotic results on model misspecification.…”
Section: Statistical Propertiesmentioning
confidence: 99%
“…(), but the time variation is not limited to the transition probabilities as in the study by Bazzi et al. ().…”
Section: Long Memory and Regime Switchingmentioning
confidence: 99%