In most current farming system classifications (e.g. "conventional" versus "organic"), each type of farming system encompasses a wide variety of farming practices and performances. Classifying farming systems using concepts such as "ecological", "sustainable intensification" or "agro-ecology" is not satisfactory because the concepts "overlap in…def-initions, principles and practices, thus creating…confusion in their meanings, interpretations and implications". Existing classifications most often focus either on biotechnical functioning or on socio-economic contexts of farming systems. We reviewed the literature to develop an original analytical framework of the diversity of farming systems and agriculture models that deal with these limits. To describe this framework, we first present the main differences between three biotechnical types of farming systems differing in the role of ecosystem services and external inputs: chemical input-, biological inputand biodiversity-based farming systems. Second, we describe four key socio-economic contexts which determine development and functioning of these farming systems: globalised commodity-based food systems, circular economies, alternative food systems and integrated landscape approaches. Third, we present our original analytical framework of agriculture models, defined as biotechnical types of farming systems associated with one or a combination of socio-economic contexts differing in the role of relationships based on global market prices and "territorial embeddedness". We demonstrate the potential of this framework by describing six key agriculture models and reviewing key scientific issues in agronomy associated with each one. We then analyse the added value of our analytical framework and its generic character. Lastly, we discuss transversal research issues of the agriculture models, concerning the technologies required, their function in the bioeconomy, their multi-criteria and multilevel assessments, their co-existence and the transitions between them.