Abstract. Glaciers are present in many large river basins, and due to climate change, they are undergoing considerable changes in terms of area, volume, runoff and seasonality. Although the spatial extent of glaciers is very limited in most large river basins, their role in hydrology can be substantial because glaciers store large amounts of water at varying time scales. Large-scale hydrological models are an important tool to assess climate change impacts on water resources in large river basins worldwide. Nevertheless, glaciers remain poorly represented in large-scale hydrological models. Here we present a coupling between the large-scale glacier model OGGM (v1.5.3) and the large-scale hydrological model CWatM (V1.08). We evaluated the improved glacier representation in the coupled model against the baseline hydrological model for selected river basins at 5 arcmin resolution and globally at 30 arcmin resolution, focusing on discharge projections under climate change scenarios. We find that increases in future discharge are attenuated, whereas decreases are exacerbated when glaciers are represented explicitly in the large-scale hydrological model simulations. This is explained by a projected decrease in glacier runoff in almost all basins. Calibration can compensate for lacking glacier representation in large-scale hydrological models in the past. Nevertheless, only an improved glacier representation can prevent underestimating future discharge changes, even far downstream at the outlets of large glacierized river basins. Therefore, incorporating a glacier representation into large-scale hydrological models is important for climate change impact studies, particularly when focusing on summer months or extreme years.