For safe autonomous driving, deep neural network (DNN)-based perception systems play essential roles, where a vast amount of driving images should be manually collected and labeled with ground truth (GT) for training and validation purposes. After observing the manual GT generation’s high cost and unavoidable human errors, this study presents an open-source automatic GT generation tool, CarFree, based on the Carla autonomous driving simulator. By that, we aim to democratize the daunting task of (in particular) object detection dataset generation, which was only possible by big companies or institutes due to its high cost. CarFree comprises (i) a data extraction client that automatically collects relevant information from the Carla simulator’s server and (ii) a post-processing software that produces precise 2D bounding boxes of vehicles and pedestrians on the gathered driving images. Our evaluation results show that CarFree can generate a considerable amount of realistic driving images along with their GTs in a reasonable time. Moreover, using the synthesized training images with artificially made unusual weather and lighting conditions, which are difficult to obtain in real-world driving scenarios, CarFree significantly improves the object detection accuracy in the real world, particularly in the case of harsh environments. With CarFree, we expect its users to generate a variety of object detection datasets in hassle-free ways.