Input-driven pushdown automata (IDPDA) are pushdown automata where the next action on the pushdown store (push, pop, nothing) is solely governed by the input symbol. Nowadays such devices are usually defined such that popping from the empty pushdown does not block the computation but continues it with empty pushdown. Here, we consider IDPDAs that have a more balanced behavior concerning pushing and popping. Digging input-driven pushdown automata (DIDPDA) are basically IDPDAs that, when forced to pop from the empty pushdown, dig a hole of the shape of the popped symbol in the bottom of the pushdown. Popping further symbols from a pushdown having a hole at the bottom deepens the current hole furthermore. The hole can only be filled up by pushing symbols previously popped. We study the impact of the new behavior of DIDPDAs on their power and compare their capacities with the capacities of ordinary IDPDAs and tinput-driven pushdown automata which are basically IDPDAs whose input may be preprocessed by length-preserving finite state transducers. It turns out that the capabilities are incomparable. We address the determinization of DIDPDAs and their descriptional complexity, closure properties, and decidability questions.