Abstract:The widely employed tiny neural networks (TNNs) in mobile devices are vulnerable to adversarial attacks. However, more advanced research on the robustness of TNNs is highly in demand. This work focuses on improving the robustness of TNNs without sacrificing the model’s accuracy. To find the optimal trade-off networks in terms of the adversarial accuracy, clean accuracy, and model size, we present TAM-NAS, a tiny adversarial multi-objective one-shot network architecture search method. First, we build a novel se… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.