In this study, the Mg2+-doped anatase TiO2 phase was synthesized via the solvothermal method by changing the ratio of deionized water and absolute ethanol Vwater/Vethanol). This enhances the bleaching efficiency under visible light. The crystal structure, morphology, and photocatalytic properties of Mg-doped TiO2 were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, N2 adsorption-desorption, UV-Vis spectroscopy analysis, etc. Results showed that the photocatalytic activity of the Mg2+-doped TiO2 sample was effectively improved, and the morphology, specific surface area, and porosity of TiO2 could be controlled by Vwater/Vethanol. Compared with the Mg-undoped TiO2 sample, Mg-doped TiO2 samples have higher photocatalytic properties due to pure anatase phase formation. The Mg-doped TiO2 sample was synthesized at Vwater/Vethanol of 12.5:2.5, which has the highest bleaching rate of 99.5% for the rhodamine B dye during 80 min under visible light. Adding Mg2+-doped TiO2 into the phase-separated glaze is an essential factor for enhancing the self-cleaning capability. The glaze samples fired at 1180 °C achieved a water contact angle of 5.623° at room temperature and had high stain resistance (the blot floats as a whole after meeting the water).