2016
DOI: 10.3390/chemosensors4030015
|View full text |Cite
|
Sign up to set email alerts
|

TiO2 Nanotubes Membrane Flexible Sensor for Low-Temperature H2S Detection

Abstract: This paper presents the fabrication and characterization of a flexible gas sensor based on TiO 2 nanotubes membrane, onto which array interdigitated gold electrodes in one side and a common heater in the backside were obtained using conventional microfabrication techniques. This was used to detect hydrogen sulphide within a concentration range of 6-38 ppm. The response to low concentrations of H 2 S at low temperature and good stability make the sensor a promising candidate for practical applications. These re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
9
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(10 citation statements)
references
References 28 publications
0
9
0
1
Order By: Relevance
“…Among many metal oxides, 1D TiO 2 nanostructures have been extensively used as sensing materials to build a high-performance chemical sensor for the detection of reducing gases such as H 2 , VOCs (ethanol, acetone etc.) H 2 S, NH 3 and so on [ 40 , 71 , 72 , 78 ].…”
Section: Chemical Sensing Propertiesmentioning
confidence: 99%
See 1 more Smart Citation
“…Among many metal oxides, 1D TiO 2 nanostructures have been extensively used as sensing materials to build a high-performance chemical sensor for the detection of reducing gases such as H 2 , VOCs (ethanol, acetone etc.) H 2 S, NH 3 and so on [ 40 , 71 , 72 , 78 ].…”
Section: Chemical Sensing Propertiesmentioning
confidence: 99%
“…Therefore, finding equipment for early detection of H 2 S is highly recommended. In this context, P. M. Perillo et al fabricated flexible H 2 S sensors based on anatase TiO 2 nanotubes [ 72 ]. The tube length was 12 µm, while the pore and wall diameters were approximately 100 nm and 30 nm, respectively.…”
Section: Chemical Sensing Propertiesmentioning
confidence: 99%
“…The detection of H 2 S can give useful information to identify the overcooked and rotten food [74]. Various oxide materials and their compositions have been studied for the fabrication of H 2 S sensors [75][76][77][78][79][80][81][82][83][84]. Porous metal oxide nanostructures, such as TiO 2 , NiO, and CuO are very attractive materials for H 2 S detection [75][76][77]85].…”
Section: Food Quality Controlmentioning
confidence: 99%
“…Various oxide materials and their compositions have been studied for the fabrication of H 2 S sensors [75][76][77][78][79][80][81][82][83][84]. Porous metal oxide nanostructures, such as TiO 2 , NiO, and CuO are very attractive materials for H 2 S detection [75][76][77]85]. They have shown a good response towards low concentrations of H 2 S. In addition, the porous NiO and CuO with p-type conductivity could detect H 2 S in ppb level at relatively low operating temperatures [76,77].…”
Section: Food Quality Controlmentioning
confidence: 99%
“…A pesar de que en los últimos años se han hecho avances significativos en el modelamiento y solución de problemas que envuelven fuentes discretas de generación de calor [16][17][18], es fundamental extender el uso de las técnicas analíticas para modelar fuentes de generación de calor con formas más complejas, de relevancia para la ingeniería y que se encuentren comercialmente disponibles. En este trabajo utilizamos el método integral de las funciones de Green para determinar la solución analítica de la distribución de temperaturas tridimensional en un medio homogéneo con una fuente de generación de calor en forma de onda rectangular, geometría típica usada en los calentadores eléctricos flexibles que están comercialmente disponibles [19][20][21]. Utilizando la solución analítica obtenida, se presenta una ecuación simple que permite calcular la conductividad térmica efectiva de un cuerpo a partir de los datos experimentales de temperatura y posición.…”
Section: Introductionunclassified