Tip-enhanced Raman spectroscopy (TERS) is a powerful technique that enables ultrahigh spatial resolution and ultrasensitive chemical imaging. This technique's ability to track plasmon-induced/enhanced chemical reactions in real space has gained increasing popularity in recent years. In this study, we expose inherent difficulties associated with assigning TERS signatures that accompany chemical transformations. Namely, distinct selection rules as well as the possibility of multiple physical processes/chemical reaction pathways complicate spectral assignments and necessitate caution in assigning the experimental observables. We illustrate the latter using 4,4′-dimercaptostilbene-functionalized plasmonic silver nanocubes, wherein we identify the TERS signatures of product formation, molecular charging, multipolar Raman scattering, and preferred molecular orientations that all lead to distinct and assignable spectral patterns.