Breast cancer is the second-most frequently diagnosed malignancy in US women. The triple-negative breast cancer (TNBC) subtype, which lacks expression of the estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, afflicts 15% of patients and is refractory to current targeted therapies. Like many cancers, TNBC cells often deregulate programmed cell death by upregulating anti-apoptotic proteins of the B-cell CLL/lymphoma 2 (Bcl-2) family. One family member, myeloid cell leukemia-1 (Mcl-1), is commonly amplified in TNBC and correlates with a poor clinical prognosis. Here we show the effect of silencing Mcl-1 and Bcl-2-like protein 1 isoform 1 (Bcl-xL) expression on viability in a panel of seventeen TNBC cell lines. Cell death was observed in a subset upon Mcl-1 knockdown. In contrast, Bcl-xL knockdown only modestly reduced viability, indicating that Mcl-1 is a more important survival factor. However, dual silencing of both Mcl-1 and Bcl-xL reduced viability in most cell lines tested. These proliferation results were recapitulated by BH3 profiling experiments. Treatment with a Bcl-xL and Bcl-2 peptide had only a moderate effect on any of the TNBC cell lines, however, co-dosing an Mcl-1-selective peptide with a peptide that inhibits Bcl-xL and Bcl-2 was effective in each line tested. Similarly, the selective Bcl-xL inhibitor WEHI-539 was only weakly cytotoxic across the panel, but sensitization by Mcl-1 knockdown markedly improved its EC 50 . ABT-199, which selectively inhibits Bcl-2, did not synergize with Mcl-1 knockdown, indicating the relatively low importance of Bcl-2 in these lines. Mcl-1 sensitivity is not predicted by mRNA or protein levels of a single Bcl-2 family member, except for only a weak correlation for Bak and Bax protein expression. However Breast cancer is the second-most frequently diagnosed malignancy in US women with 230 000 new cases and 40 000 deaths in 2011. The triple-negative breast carcinoma (TNBC) subtype, which does not express the estrogen receptor (ER) and progesterone receptor (PR) and lacks overexpression of human epidermal growth factor receptor-2 (HER2), afflicts nearly 15% of all breast cancer patients and remains refractory to currently available endocrine and HER2-directed therapies.1,2 The current standard of care for TNBC is radiation and neoadjuvant cytotoxic chemotherapy, and carries a poor clinical prognosis. [3][4][5] As with most cancers, TNBC cells are under metabolic and oncogenic stress and require inhibition of the intrinsic apoptotic pathway for survival. 6 Under normal physiological conditions, this pathway is tightly regulated by both pro-and anti-apoptotic members of the B-cell CLL/lymphoma 2 (Bcl-2) family. Stressors such as DNA damage, hypoxia or oncogenic signaling, cause increased expression or translocation of proapoptotic Bcl-2 family members, such as Bim, Bad and Noxa, to the mitochondria. 7 These proteins subsequently trigger pore formation in the mitochondrial outer membrane via induced multimerization of Bak or Bax, a proc...