During the last century, it has been established that regions within solid tumors experience mild to severe oxygen deprivation, due to aberrant vascular function. These hypoxic regions are associated with altered cellular metabolism, as well as increased resistance to radiation and chemotherapy. As discussed in this Timeline, over the past decade, work from many laboratories has elucidated the mechanisms by which hypoxia-inducible factors (HIFs) modulate tumor cell metabolism, angiogenesis, growth, and metastasis. The central role played by intra-tumoral hypoxia and HTF in these processes has made them attractive therapeutic targets in the treatment of multiple human malignancies.Oxygen (O 2 ) is required for aerobic metabolism to maintain intracellular bioenergetics and serve as an electron acceptor in many organic and inorganic reactions. Hypoxia, defined as reduced O 2 levels, occurs in a variety of pathological conditions, including stroke, tissue ischemia, inflammation, and the growth of solid tumors. The beginnings of hypoxia research in tumor biology can be traced back to observations made in the early 20 th century by Otto Warburg who demonstrated that, unlike normal cells, tumor cells favor glycolysis, independent of cellular oxygenation levels. He postulated that tumor growth is caused by mitochondrial dysfunction in neoplastic cells, forcing them to generate energy through glycolysis (reviewed in 1 ). This hypothesis appears to be incorrect, but a number of other molecular mechanisms promoting "aerobic glycolysis" have been proposed including mutations and epigenetic changes in genes encoding tumor suppressors (e.g. p53), oncogene activation (e.g. c-Myc), and hypoxic adaptations {Denko, 2008 #6606; Gatenby, 2004 #6608; Deberardinis, 2008 #6609.