Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Current non-pneumatic wheel (NPW) designs with non-helical honeycomb spokes generally show too high cornering stiffness and thereby rapid saturation of the cornering force, which may lead to inferior handling and directional control of the vehicle, particularly under high operating speeds. The design concept of NPWs with symmetric helical honeycomb spokes is thus proposed in this paper. Three-dimensional (3D) finite element (FE) models of a honeycomb NPW with symmetric helical spokes configurations of different cell and helix angles were developed in order to fundamentally study its multi-axis and cornering stiffness properties under a constant normal load. The validities of the developed NPW models with 0° helix angle and three different cell angles were demonstrated through comparisons of predicted wheel responses with results available in published studies. 3D simulations were conducted under two design constraints in terms of identical cell-wall thickness and identical load carrying capacity. The results suggest that increasing helix angle results in significantly greater in-plane shear stiffness of the honeycomb spokes and thus could effectively yield higher longitudinal and vertical stiffness of the NPW. An increase in helix angle also causes lower lateral stiffness for the wheel designs with 15.8° and 31.5° cell angles resulting from increases in the out-of-plane compliance of the spokes, apart from the notably lower cornering stiffness, particularly when it is increased to 30° and 45°. The cell-wall thickness, however, shows positive influences on multi-axis stiffness of the honeycomb wheel but negative effects on its cornering stiffness. The design concept of helical honeycomb spokes could offer better vehicle performances than the current designs in terms of braking/traction and handling characteristics. These are particularly important for promoting applications of the NPW in high-speed vehicles.
Current non-pneumatic wheel (NPW) designs with non-helical honeycomb spokes generally show too high cornering stiffness and thereby rapid saturation of the cornering force, which may lead to inferior handling and directional control of the vehicle, particularly under high operating speeds. The design concept of NPWs with symmetric helical honeycomb spokes is thus proposed in this paper. Three-dimensional (3D) finite element (FE) models of a honeycomb NPW with symmetric helical spokes configurations of different cell and helix angles were developed in order to fundamentally study its multi-axis and cornering stiffness properties under a constant normal load. The validities of the developed NPW models with 0° helix angle and three different cell angles were demonstrated through comparisons of predicted wheel responses with results available in published studies. 3D simulations were conducted under two design constraints in terms of identical cell-wall thickness and identical load carrying capacity. The results suggest that increasing helix angle results in significantly greater in-plane shear stiffness of the honeycomb spokes and thus could effectively yield higher longitudinal and vertical stiffness of the NPW. An increase in helix angle also causes lower lateral stiffness for the wheel designs with 15.8° and 31.5° cell angles resulting from increases in the out-of-plane compliance of the spokes, apart from the notably lower cornering stiffness, particularly when it is increased to 30° and 45°. The cell-wall thickness, however, shows positive influences on multi-axis stiffness of the honeycomb wheel but negative effects on its cornering stiffness. The design concept of helical honeycomb spokes could offer better vehicle performances than the current designs in terms of braking/traction and handling characteristics. These are particularly important for promoting applications of the NPW in high-speed vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.