Somatic embryogenesis is a preferred method for vegetative propagation due to its high propagation efficiency. In this study, zygotic embryos, cotyledons, and hypocotyls of Paeonia ostii ‘Fengdan’ were used as the explant to induce somatic embryogenesis. The results showed that a combination of 0.5 mg·L−1 thidiazuron (TDZ) and 0.5 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) was effective in inducing somatic embryos from the zygotic embryo and cotyledon explants. Hypocotyls only formed somatic embryos on Murashige and Skoog (MS) medium supplemented with both 0.5 mg·L−1 TDZ and 0.5 mg·L−1 1-naphthylacetic acid (NAA). Moreover, the compact callus was effectively produced from zygotic embryo, cotyledon, and hypocotyl explants in medium supplemented with a combination of 3.0 mg·L−1 6-benzylaminopurine (BA) and 1.0 mg·L−1 NAA, and then converted into somatic embryos in the same medium, and the ratio of the explants with embryo induction and number of embryos induced per explant were much higher than those induced by 0.5 mg·L−1 TDZ and either 0.5 mg·L−1 2,4-D or 0.5 mg·L−1 NAA. The MS medium was better than the woody plant medium (WPM) for inducing somatic embryos from zygotic embryo and hypocotyl explants, whereas the WPM was better than the MS medium for somatic embryogenesis induction from cotyledon explants. All of the somatic embryos developed well into mature embryos on their respective media supplemented with both 3.0 mg·L−1 BA and 1.0 mg·L−1 NAA. Overall, the protocols for indirect somatic embryogenesis from zygotic embryo, cotyledon, and hypocotyl of P. ostii ‘Fengdan’ were successfully established, which can greatly facilitate their propagation and breeding processes.