Human noroviruses are major causes of foodborne outbreaks linked to berries. The overall goal of this study was to investigate the persistence of a human norovirus surrogate, Tulane virus (TV), in berry smoothies and under simulated digestion through the gastrointestinal track. Two types of smoothies were prepared from blueberries and strawberries. Tulane virus was spiked into each smoothie and incubated either at 37 or 4 °C for 2, 60, and 120 min. Furthermore, the virus-spiked smoothies were subjected to sequential oral (2 min), gastric (10 and 60 min), and intestinal (15 and 120 min) digestion according to the standardized INFOGEST model. Quantification of infectious TV was carried out using the TCID50 assay. At 4 °C, in both berry smoothies, TV infectivity did not show significant changes throughout the 120 min period. At 37 °C, TV infectivity showed significant reduction (~0.5 log TCID50/mL) only in blueberry smoothies starting at 60 min. During the oral, gastric, and intestinal digestion phases, the mean log reduction in TV infectivity in blueberry did not exceed ~0.5 log, while infectious TV in strawberry smoothies under all phases was stable. Given the notable stability of infectious viruses in berry smoothies and the gastrointestinal tract, prevention of norovirus contamination of berries is paramount to reduce virus outbreaks linked to berries.