The front-line tuberculosis (TB) chemotherapeutics isoniazid (INH), rifampicin (RIF) and pyrazinamide (PZA) have been labeled with carbon-11 and the biodistribution of each labeled drug has been determined in baboons using positron emission tomography (PET). Each radiosynthesis and formulation has been accomplished in 1 h, using [11C]CH3I to label RIF, and [11C]HCN to label INH and PZA. Following i.v. administration, INH, PZA, RIF and/or their radiolabeled metabolites clear rapidly from many tissues, however INH, PZA and/or their metabolites accumulate in the bladder while RIF and/or its metabolites accumulates in the liver and gall bladder, consistent with the routes of excretion of the drugs. In addition, the biodistribution data demonstrate that the ability of the three drugs and their radiolabeled metabolites to cross the blood-brain barrier decreases in the order PZA > INH > RIF, although in all cases the estimated drug concentrations are greater than the minimum inhibitory concentration (MIC) values for inhibiting bacterial growth. The pharmacokinetic (PK) and drug distribution data have important implications for treatment of disseminated TB in the brain, and pave the way for imaging the distribution of the pathogen in vivo.