Cushing’s syndrome, or hypercortisolism (HC), a common endocrinopathy in adult dogs, is caused by chronic hypercortisolemia. Among different metabolic disorders, this syndrome is associated with enhanced subcutaneous lipolysis and visceral adiposity. However, effects of HC in adipose tissue, especially regarding visceral adipose tissue (VAT), are still poorly understood. Herein, the transcriptomic effects of chronic HC on VAT of dogs were evaluated. For this, subcutaneously implanted ACTH-releasing pumps were used, followed by deep RNA sequencing of the canine VAT. Prolonged HC seems to affect a plethora of regulatory mechanisms in VAT of treated dogs, with 1190 differentially expressed genes (DEGs, p and FDR < 0.01) being found. The 691 downregulated DEGs were mostly associated with functional terms like cell adhesion and migration, intracellular signaling, immune response, extracellular matrix and angiogenesis. Treatment also appeared to modulate local glucocorticoid and insulin signaling and hormonal sensitivity, and several factors, e.g., TIMP4, FGF1, CCR2, CXCR4 and HSD11B1/2, were identified as possible important players in the glucocorticoid-related expansion of VAT. Modulation of their function during chronic HC might present interesting targets for further clinical studies. Similarities in the effects of chronic HC on VAT of dogs and humans are highlighted.