The distribution kinetics of enoxacin and its main metabolite oxoenoxacin in excretory fluids was investigated in 11 healthy volunteers. A single intravenous dose of 428 mg of enoxacin was given as a 1-h infusion. Serial samples of plasma, urine, saliva, nasal secretions, tears, and sweat were drawn and analyzed for enoxacin and oxoenoxacin by reversed-phase high-pressure liquid chromatography. Large differences in the concentration-time profiles of the excretory fluids analyzed were observed. Nasal secretions exhibited the highest enoxacin exposure, as assessed by the area under the concentration-time curve. Excretory fluid/plasma area under the concentration-time curve ratios were found to be 1.67 ؎ 0.36 for nasal secretions, 0.76 ؎ 0.28 for saliva, 0.25 ؎ 0.07 for sweat, and 0.23 ؎ 0.11 for tears. The elimination half-life of enoxacin from sweat (8.27 ؎ 2.63 h) was significantly longer than that for plasma (5.10 ؎ 0.46 h). Oxoenoxacin was detected in urine and saliva and exhibited a higher renal clearance and a lower saliva exposure than the parent compound. In contrast to that of the metabolite, distribution of enoxacin in saliva was found to be time and pH dependent. In conclusion, our study revealed considerable differences in the distribution kinetics of enoxacin among various excretory sites. Because of distinct acidic and basic properties, the anionic oxometabolite significantly differs from the zwitterionic parent compound in its distribution characteristics.