Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain largely unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific Gαi-βγ-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is co-expressed in TRPV1-expressing mouse DRG neurons. NPR-C can be co-immunoprecipitated with Gαi, and CNP treatment induced translocation of PKCε to the plasma membrane of these neurons, which was inhibited by pertussis toxin pre-treatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons, and increased neuronal firing frequency, an effect that was absent in DRG neurons from TRPV1−/− mice. CNP-induced sensitization of TRPV1 activity was attenuated by pre-treatment of DRG neurons with the specific inhibitors of Gβγ, PLCβ or PKC, but not of PKA, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Further, CNP injection into mouse hind paw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of Gβγ or TRPV1, and was also absent in TRPV1−/− mice. Thus, our work identifies the Gβγ-PLCβ-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity.