Subject of this study is surface modification of titanium with thin layers of carbon nanotubes, obtained via an electrophoretic deposition, as a means to improve metal's biocompatibility and provide a suitable matrix for very facile further modifications, if needed. Article presents a preliminary evaluation of the material, using goniometer, scanning electron microscopy and the Raman spectroscopy. The layer is found to be composed of randomly distributed, strongly adhered carbon nanotubes, introducing nanotopography to the surface of titanium. Biological studies were conducted with the human osteoblast-like cell line MG63. Biocompatibility of materials was evaluated using: (a) lactate dehydrogenase cytotoxicity test (LDH) and (b) γ-H2AX genotoxicity test (presence of DNA double strand breaks). Results confirmed non-toxic character of the tested materials. Moreover, carbon nanotubes layers enhanced the biocompatibility properties of titanium substrate -material with carbon nanotubes possessed lower cellular toxic properties even than pure titanium. The result of this preliminary study are very promising and may serve as a starting point for further studies, including further chemical or biological modification of the obtained materials.