This study describes the utilization of hierarchical photoactive surface films for the decomposition of surfactants in water samples (with different pH). Photoactive films, containing tungsten (VI) oxide and iron (III) oxide (hematite), were deposited in a systematic and controlled manner using a layer-by-layer method. Physicochemical properties of the photoactive materials were developed and characterized using XRD analysis, Raman spectroscopy, water contact angle, voltammetry, and microscopic (SEM) techniques. The resulting multilayer films showed attractive performances in the photodegradation of the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant (1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton™ X-144) under solar light irradiation. The efficiency of the surfactants’ photodegradation was evaluated with a “test” based on a method, which is extremely sensitive to surfactants’ interference, with trace analysis of Pb using anodic stripping voltammetry on mercury electrodes (recovery study). The usefulness of hierarchical photoactive systems in the photodegradation of both surfactants is demonstrated in the presence and absence of the applied bias voltage. The maximum decomposition times were 2–3 h and 30 min, respectively. Furthermore, a properly designed layer system may be proposed, matching the pH of the water sample (depending on the treatment on the sampling side).