Memory T cells are primed for rapid responses to antigen; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpG) mapped by deep sequencing of T cell activation in human naïve and memory CD4 T cells. 466 CpGs (132 genes) displayed differential methylation between naïve and memory cells. 21 genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 of 21 genes encode proteins closely studied in T cells, while 15 genes represent novel targets for further study. 84 genes demonstrated differential methylation between memory and naïve cells that correlated to differential gene expression following activation, of which 39 exhibited reduced methylation in memory cells coupled with increased gene expression upon activation compared to naïve cells. These reveal a class of primed genes more rapidly expressed in memory compared to naïve cells and putatively regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells that correlates with activation-induced gene expression.