Joint replacement surgery is a standard treatment of advanced osteoarthritis (OA). Since 2000, cobalt-chromium (CoCr) metal-on-metal (MoM) implants were widely used in hip arthroplasties. Some patients developed "adverse reaction to metal debris" (ARMD) around the prosthesis, resulting in a need for revision surgery. In the present study, we addressed the pathogenesis of ARMD by genome-wide expression analysis. Pseudosynovial ARMD tissue was obtained from revision surgery of Articular Surface Replacement (ASR, DePuy, Warsaw, IN, USA) hip arthroplasties. Control tissue was 1) OA synovium from primary hip arthroplasties and 2) inflammatory pseudosynovial tissue from metal-on-plastic (MoP) implant revisions. In ARMD tissue, the expression of 1446 genes was significantly increased and that of 1881 decreased as compared to OA synovium. Genes associated with immune response, tissue development and certain leukocyte signaling pathways were enriched in the differently (FC > 2) expressed genes. The network analysis proposed PRKACB, CD2, CD52 and CD53 as the central regulators of the greatest (FC > 10) differences. When ARMD tissue was compared to MoP tissue, the expression of 16 genes was significantly higher and that of 21 lower. Many of these genes were associated with redox homeostasis, metal ion binding and transport, macrophage activation and apoptosis. Interestingly, genes central to myofibroblast (AEBP1 and DES) and osteoclast (CCL21, TREM2 and CKB) development were upregulated in the MoP tissue. In network analysis, IL8, NQO1, GSTT1 and HMOX1 were identified as potential central regulators of the changes. In conclusion, excessive amounts of CoCr debris produced by MoM hip implants induces in a group of patients a unique adverse reaction characterized with enhanced expression of genes associated with inflammation, redox homeostasis, metal ion binding and transport, macrophage activation and apoptosis.