NOTCH-dependent signaling pathways are critical for normal bone remodeling; however, it is unclear if dysfunctional NOTCH activation contributes to inflammation-mediated bone loss, as observed in rheumatoid arthritis (RA) patients. We performed RNA sequencing and pathway analyses in mesenchymal stem cells (MSCs) isolated from transgenic TNF-expressing mice, a model of RA, to identify pathways responsible for decreased osteoblast differentiation. 53 pathways were dysregulated in MSCs from RA mice, among which expression of genes encoding NOTCH pathway members and members of the noncanonical NF-κB pathway were markedly elevated. Administration of NOTCH inhibitors to RA mice prevented bone loss and osteoblast inhibition, and CFU-fibroblasts from RA mice treated with NOTCH inhibitors formed more new bone in recipient mice with tibial defects. Overexpression of the noncanonical NF-κB subunit p52 and RELB in a murine pluripotent stem cell line increased NOTCH intracellular domain-dependent (NICD-dependent) activation of an RBPjκ reporter and levels of the transcription factor HES1. TNF promoted p52/RELB binding to NICD, which enhanced binding at the RBPjκ site within the Hes1 promoter. Furthermore, MSC-enriched cells from RA patients exhibited elevated levels of HES1, p52, and RELB. Together, these data indicate that persistent NOTCH activation in MSCs contributes to decreased osteoblast differentiation associated with RA and suggest that NOTCH inhibitors could prevent inflammation-mediated bone loss.
IntroductionPatients with chronic inflammatory diseases, such as rheumatoid arthritis (RA), often have severe systemic bone loss and increased risk of fracture due to increased bone resorption and decreased bone formation, partially mediated by elevated TNF levels (1). We (1-4) and others (5, 6) have reported that TNF inhibits bone formation by affecting major osteoblast regulatory pathways, including BMP/SMAD/RUNX2 and WNT-β-catenin, but the role of TNF in osteoblast differentiation from MSCs has not been fully defined. The TNF transgenic (TNF-Tg) mouse model we use, line 3647, represents a good model of RA to study the influence of chronically elevated, but relatively low, levels of TNF and TNF-induced inflammation on bone cell function and MSC differentiation into osteoblasts (7). To attempt to identify molecules responsible for reduced differentiation of MSCs into osteoblasts in RA, we performed genome-wide screening and pathway analyses using data from RNA sequencing (RNA-Seq) of MSCs purified from TNF-Tg mice and WT littermates. We found that genes in the NOTCH and noncanonical NF-κB signaling pathways were markedly upregulated in TNF-Tg mouse MSCs, raising the possibility that NOTCH may interact with noncanonical NF-κB proteins in MSCs to inhibit their osteogenic differentiation.NOTCH is a family of evolutionarily conserved receptors that regulate cell fate. NOTCH receptors are activated following direct contact with their ligands expressed on adjacent cells. In mammals, there are 4 NOTCH receptors (NOTCH1-NOTCH4)...