| Background: Joint inflammation is a common clinical problem in patients treated by physical therapists. The hypothesis of this study is that joint inflammation induces molecular and structural changes in the soleus muscle, which is composed mainly of slow-twitch muscle fibers. Objective: To study the effect of tibiotarsal joint inflammation on muscle fiber cross-sectional area (CSA), gene expression levels (atrogin-1, MuRF1, MyoD, myostatin, p38MAPK, NFκB, TNF-alpha), and TNF-alpha protein in the soleus muscle. Method: Wistar rats were randomly divided into 3 periods (2, 7 and 15 days) and assigned to 4 groups (control, sham, inflammation, and immobilization). Results: In the inflammation group at 2 days, MuRF1 and p38MAPK expression had increased, and NFκB mRNA levels had decreased. At 7 days, myostatin expression had decreased. At 7 and 15 days, this group had muscle fiber CSA reduction. At 2 days, the immobilization group showed increased atrogin-1, MuRF1, NFκB, MyoD, and p38MAPK expressions and reduced muscle fiber CSA. At 7 and 15 days, myostatin mRNA levels had increased, and the CSA had decreased. The sham group showed increased p38MAPK and myostatin expressions at 2 and 7 days, respectively. No changes occurred in TNF-alpha gene or protein expression. Conclusion: Acute joint inflammation induces gene expression related to the proteolytic pathway without reduction in muscle fiber CSA. Chronic joint inflammation induced muscle atrophy without up-regulation of important genes belonging to the proteolytic pathway. Thus, muscle adaptation may differ according to the stage of joint inflammation, which suggests that the therapeutic modalities used by physical therapists at each stage should also be different.Keywords: skeletal muscle; joint disease; gene expression; muscle plasticity; physical therapy; rehabilitation.
HOW TO CITE THIS ARTICLERamírez C, Russo TL, Delfino G, Peviani SM, Alcântara C, Salvini TF. Effect of tibiotarsal joint inflammation on gene expression and cross-sectional area in rat soleus muscle. Braz J Phys Ther. 2013 May-June; 17(3):244-254. http://dx