Innate B cells are a heterogeneous group of cells that function in maintaining homeostatic levels of circulating natural antibodies and being the first line of defense against infections. Innate B-1 cells and marginal zone B cells may relocate to lymphoid follicles and differentiate into cytokine and antibody-secreting cells in T-independent and T-dependent manners. Although marginal zone B cells are widely described in humans, the presence of B-1 cells is more controversial. Here, we review the basic features of the innate B-cell subsets identified in mice and their equivalent in humans, as well as their potential roles in transplantation. We summarize the findings of Cascalho and colleagues on the unexpected protective role of tumor necrosis factor receptor superfamily member 13B in regulating circulating levels of protective natural immunoglobulin M, and the studies by Zorn and colleagues on the potential pathogenic role for polyreactive innate B cells infiltrating allograft explants. Finally, we discuss our studies that took a transcriptomic approach to identify innate B cells infiltrating kidney allografts with antibody-mediated rejection and to demonstrate that local antigens within the allograft together with inflammation may induce a loss of B-cell tolerance.