In this study, TiN, TiCN, and Ti-diamond-like carbon (Ti-DLC) films were coated on 316 L stainless steel (AISI 316 L) substrate surface by physical vapor deposition. The biocompatibility of the three films (TiN, TiCN, and Ti-DLC) and three metals (AISI 316 L, Ti, and Cu) was compared on the basis of the differences in the surface morphology, water contact angle measurements, CCK-8 experiment results, and flow cytometry test findings. The biocompatibility of the TiN and TiCN films is similar to that of AISI 316 L, which has good biocompatibility. However, the biocompatibility of the Ti-DLC films is relatively poor, which is mainly due to the inferior hydrophobicity and large amount of sp2 phases. The presence of TiC nanoclusters on the surface of the Ti-DLC film aggravates the inferior biocompatibility. Compared to the positive Cu control group, the Ti-DLC film had a higher cell proliferation rate and lower cell apoptosis rate. Although the Ti-DLC film inhibited cell survival to a certain extent, it did not show obvious cytotoxicity. TiN and TiCN displayed excellent performance in promoting cell proliferation and reducing cytotoxicity; thus, TiN and TiCN can be considered good orthodontic materials, whereas Ti-DLC films require further improvement.