Abstract:To detect the irregular trade behaviors in the stock market is the important problem in machine learning field. These irregular trade behaviors are obviously illegal. To detect these irregular trade behaviors in the stock market, data scientists normally employ the supervised learning techniques. In this paper, we employ the three graph Laplacian based semi-supervised ranking methods to solve the irregular trade behavior detection problem. Experimental results show that that the un-normalized and symmetric nor… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.