Immunotherapy, a treatment based on host immune system activation, has been shown to provide a substitute for marginally effective conventional chemotherapy in controlling visceral leishmaniasis (VL), the deadliest form of leishmaniasis. As the majority of endemic inhabitants exhibit either subclinical or asymptomatic infection which often develops into the active disease state, therapeutic intervention seems to be an important avenue for combating infections by stimulating the natural defense system of infected individuals. With this perspective, the present study focuses on two immunodominant Leishmania (L.) donovani antigens (triosephosphate isomerase and enolase) previously proved to be potent prophylactic VL vaccine candidates, for generating a recombinant chimeric antigen. This is based on the premise that in a heterogeneous population, a multivalent antigen vaccine would be required for an effective response against leishmaniasis (a complex parasitic disease). The resulting molecule rLdT-E chimeric protein was evaluated for its immunogenicity and immunotherapeutic efficacy. A Th1 stimulating adjuvant BCG was employed with the protein which showed a remarkable 70% inhibition of splenic parasitic multiplication positively correlated with boosted Th1 dominant immune response against lethal L. donovani challenge in hamsters as evidenced by high IFN-γ and TNF-α and low IL-10. In addition, immunological analysis of antibody subclass presented IgG2-based humoral response besides considerable delayed-type hypersensitivity and lymphocyte proliferative responses in rLdT-E/BCG-treated animals. Our observations indicate the potential of the chimera towards its candidature for an effective vaccine against Leishmania donovani infection.