Electroplating nanocrystallite Ni coating can improve the mechanical properties of the metal structure surface, which is widely used in fabricating metal MEMS devices. Because of the large internal compressive stress caused by the oxidation layer of the substrate surface, the Ni coating easily falls off from the substrate surface. To solve this bonding problem, the ultrasonic assisted electrochemical potential activation method was applied. The ultrasonic experiments have been carried out. The bonding strength was measured by the indentation method. The substrate surface oxygen element was tested by the X-ray photoelectron spectroscopy (XPS) method. The dislocation was observed by the TEM method. The compressive stress was tested by the XRD method. The coating surface roughness Ra was investigated by the contact profilometer method. The results indicated that the ultrasonic activation method can remove the oxygen content of the substrate surface and reduce the dislocation density of the electroplating Ni coating. Then, the compressive stress of the electroplated Ni coating has been reduced and the bonding strength has been improved. From the viewpoint of the compressive stress caused by the oxygen element of the substrate surface, mechanisms of the ultrasonic activation method to improve the bonding strength were researched originally. This work may contribute to enhancing the interfacial bonding strength of metal MEMS devices.