Non-oxidative dehydrogenation of propane to propene is an established large-scale process that, however, faces challenges, particularly in catalyst development; these are the toxicity of chromium compounds, high cost of platinum, and catalyst durability. Herein, we describe the design of unconventional catalysts based on bulk materials with a certain defect structure, for example, ZrO2 promoted with other metal oxides. Comprehensive characterization supports the hypothesis that coordinatively unsaturated Zr cations are the active sites for propane dehydrogenation. Their concentration can be adjusted by varying the kind of ZrO2 promoter and/or supporting tiny amounts of hydrogenation-active metal. Accordingly designed Cu(0.05 wt %)/ZrO2 -La2 O3 showed industrially relevant activity and durability over ca. 240 h on stream in a series of 60 dehydrogenation and oxidative regeneration cycles between 550 and 625 °C.