SUMMARYWireless sensor network (WSN) has attracted many researchers to investigate it in recent years. It can be widely used in the areas of surveillances, health care and agriculture. The location information is very important for WSN applications such as geographic routing, data fusion and tracking. So the localization technology is one of the key technologies for WSN. Since the computational complexity of the traditional source localization is high, the localization method can not be used in the sensor node. In this paper, we firstly introduce the Neyman-Pearson criterion based detection model. This model considers the effect of false alarm and missing alarm rate, so it is more realistic than the binary and probability model. An affinity propagation algorithm based localization method is proposed. Simulation results show that the proposed method provides high localization accuracy.