2020
DOI: 10.1080/00949655.2020.1828416
|View full text |Cite
|
Sign up to set email alerts
|

Tobit Liu estimation of censored regression model: an application to Mroz data and a Monte Carlo simulation study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
19
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(19 citation statements)
references
References 29 publications
0
19
0
Order By: Relevance
“…Toker et al 36 developed the following censored log‐likelihood function by adding a penalization term to Equation () QTLEgoodbreak=logL()X;β,σ2goodbreak+12σ2false(βdβtrue^false)(βgoodbreak−dtrueβ^),$$ {Q}_{TLE}=\log L\left(X;\beta, {\sigma}^2\right)+\frac{1}{2{\sigma}^2}{\left(\beta -d\hat{\beta}\right)}^{\prime}\left(\beta -d\hat{\beta}\right), $$ where 12σ2$$ \frac{1}{2{\sigma}^2} $$ is a Lagrangian multiplier, d$$ d $$ is the Liu biasing parameter in the interval (0,1)$$ \left(0,1\right) $$ and trueβ^$$ \hat{\beta} $$ is the T‐MLE attained in the final iteration. Although Toker et al 36 took the interval of d$$ d $$ as 0<d<1$$ 0<d<1 $$, this interval can be extended to normal∞<d<normal∞$$ -\infty <d<\infty $$ (see 26,57 ). With the help of Equation (), they obtained the final form of the T‐LE as βtrue^TLEfalse(hfalse)=βtrue^TLEfalse(h1false)…”
Section: Tobit Regression Model and Some Estimatorsmentioning
confidence: 99%
See 4 more Smart Citations
“…Toker et al 36 developed the following censored log‐likelihood function by adding a penalization term to Equation () QTLEgoodbreak=logL()X;β,σ2goodbreak+12σ2false(βdβtrue^false)(βgoodbreak−dtrueβ^),$$ {Q}_{TLE}=\log L\left(X;\beta, {\sigma}^2\right)+\frac{1}{2{\sigma}^2}{\left(\beta -d\hat{\beta}\right)}^{\prime}\left(\beta -d\hat{\beta}\right), $$ where 12σ2$$ \frac{1}{2{\sigma}^2} $$ is a Lagrangian multiplier, d$$ d $$ is the Liu biasing parameter in the interval (0,1)$$ \left(0,1\right) $$ and trueβ^$$ \hat{\beta} $$ is the T‐MLE attained in the final iteration. Although Toker et al 36 took the interval of d$$ d $$ as 0<d<1$$ 0<d<1 $$, this interval can be extended to normal∞<d<normal∞$$ -\infty <d<\infty $$ (see 26,57 ). With the help of Equation (), they obtained the final form of the T‐LE as βtrue^TLEfalse(hfalse)=βtrue^TLEfalse(h1false)…”
Section: Tobit Regression Model and Some Estimatorsmentioning
confidence: 99%
“…Provided that the initial step value of the T‐MLE is equal to the initial step value of the T‐LE, finally Toker et al 36 defined the initial step T‐LE as follows: βtrue^TLEfalse(1false)=XtrueΩ^(0)X+I1()XnormalΩtrue^false(0false)X+italicdIβtrue^false(1false),$$ {\hat{\beta}}_{TLE}^{(1)}={\left({X}^{\prime }{\hat{\Omega}}^{(0)}X+I\right)}^{-1}\left({X}^{\prime }{\hat{\Omega}}^{(0)}X+ dI\right){\hat{\beta}}^{(1)}, $$ where normalΩtrue^false(0false)$$ {\hat{\Omega}}^{(0)} $$ is calculated at βfalse(0false)$$ {\beta}^{(0)} $$. In the case that d=1$$ d=1 $$, the initial step T‐LE reduces to the initial step T‐MLE.…”
Section: Tobit Regression Model and Some Estimatorsmentioning
confidence: 99%
See 3 more Smart Citations